
Vector Databases
Demystified
How they work and
why they’re important

Art Anderson
Director of Developer Advocacy

©2024 Aerospike, Inc. – All rights reserved / 2

create-a-vector-db.netlify.app

While you wait, please help create a data set by visiting this url and
create a product or two for a fictional bank dealing with mythological
creatures

For example:

Type: Mortgage Product
Name: Swamp Leasing
Description: Lending for the leasing of swamps. Primarily focused
around murky swamps for ogres, but other creatures may use this
product.

Use your imagination, make it kooky and funny and not rude but focused
around mythological creatures please!

Vector Databases Demystified

https://github.com/aerospike-examples/create-a-vector-database

©2024 Aerospike, Inc. – All rights reserved / 3

Agenda Large Language Models (LLMs)01

Vectors and Semantic Search02

Implementing a Vector Database03

Commercial Vector Databases04

HNSW Algorithm05

Use of Vector Databases06

©2024 Aerospike, Inc. – All rights reserved / 4

Large Language Models01

What is an LLM anyway?

©2024 Aerospike, Inc. – All rights reserved / 5

LLMs

Large Language Models (LLMs) are a
type of artificial intelligence that uses
deep learning techniques and
massively large data sets to
understand, summarize and generate
new content.

Recently popularized through
Chat-GPT, Llama, Gemini, etc.

Billions of calculations per interaction!

Yes, they can!

Can fish breathe under water?

LLM

©2024 Aerospike, Inc. – All rights reserved / 6

Prompt Engineering
PROMPT = '''\
You are a happy chatbot designed to answer the following question
in a whimsical manner.

Question: Do fish breathe air?
'''

PROMPT = '''\
You are an angry chatbot designed to answer the following question
in a gruff manner.

Question: Do fish breathe air?
'''

©2024 Aerospike, Inc. – All rights reserved / 7

Using Large Language Models

gemini-1.5-flash-001

from google.oauth2 import service_account

import vertexai

from vertexai.generative_models import GenerativeModel

Credentials to google account to allow login

credentials = service_account.Credentials.from_service_account_file("auth.json")

vertexai.init(project="aero-devrel", location="us-central1", credentials=credentials)

model = GenerativeModel("gemini-1.5-flash-001")

chat = model.start_chat(response_validation=False)

result = chat.send_message(

 content="Do fish breathe air?",

 stream=False

)

print(result)

print(result.candidates[0].content.parts[0].text)

©2024 Aerospike, Inc. – All rights reserved / 8

Take a look!

Let’s play around with an LLM

©2024 Aerospike, Inc. – All rights reserved / 9

Improving LLM Output
LLMs are prone to:

● Stale data (only know that they’re trained on)
● Non domain specific
● Hallucinations

How do I create a secondary index
in Aerospike?

Indexes in Aerospike are created
using the Secondary Index

Administration Tool

Hallucination!

LLM

©2024 Aerospike, Inc. – All rights reserved / 10

Fine tuning LLMs

● Adjusts the model’s parameters and
embeddings based on new data

● Helps model perform better for specific
tasks

○ Eg adapting to legal domain
● Requires lots of time, compute and

labeling
● Harder to adapt to new information due to

retraining

Publicly
available data

set

Foundational
LLM

Fine Tuned LLM

Labeled,
domain-specific

data set

Domain of the data scientist

AppUser

©2024 Aerospike, Inc. – All rights reserved / 11

Retrieval Augmented Generation

● Allows stricter access control to
proprietary data

● More cost-effective and scalable
● Rapid access to latest data

Publicly
available data

set

Foundational
LLM

User

Domain-specific
data in vector

DB

Embedding
Model

Domain of the developer

App

©2024 Aerospike, Inc. – All rights reserved / 12

Hallucinations!

Prevention through prompts

©2024 Aerospike, Inc. – All rights reserved / 13

Vectors and Semantic Search02

How does a semantic search work?

©2024 Aerospike, Inc. – All rights reserved / 14

Semantic search with vectors
Vector embeddings capture the semantic
meaning of source data.

● Reduces high volume data
according to meaning

● Similar to a “lossy” algorithm like
JPEG compression

Vector

1.1
2.3
6.4
2.1
1.0
…

Embedding
Model

©2024 Aerospike, Inc. – All rights reserved / 15

Vector example
Consider searching for a house with the following criteria:

● You want about 2,500ft2 floor area and 6,500ft2 land area
● Floor space is twice as important compared to land area

Of the 9 houses below, which one should you choose?

House Land Area Floor Area
1 8800 2336
2 7800 2136
3 6300 900
4 6250 2150
5 6250 3780
6 3575 1270
7 11780 3131
8 7460 3896
9 6650 2825

©2024 Aerospike, Inc. – All rights reserved / 16

Embedding example
To turn each house into a vector:

1. Normalize both land area and floor area by dividing each one by the largest value in the column
○ Gives a value in the range [0,1] for each value
○ E.g., house 1 land area is 8,800ft2, largest land area is 11,780ft2, 8800/11780 = 0.7470

House Land Area Floor Area N Land N Floor W Land W Floor
1 8800 2336 0.7470 0.5996 0.3735 0.5996
2 7800 2136 0.6621 0.5483 0.3311 0.5483
3 6300 900 0.5348 0.2310 0.2674 0.2310
4 6250 2150 0.5306 0.5518 0.2653 0.5518
5 6250 3780 0.5306 0.9702 0.2653 0.9702
6 3575 1270 0.3035 0.3260 0.1517 0.3260

7 11780 3131 1.0000 0.8036 0.5000 0.8036

8 7460 3896 0.6333 1.0000 0.3166 1.0000
9 6650 2825 0.5645 0.7251 0.2823 0.7251

2. Since floor area is worth twice as
much as land area, divide land area
by 2 (weighting)

3. Vector for each house is:
[W Land, W Floor]

©2024 Aerospike, Inc. – All rights reserved / 17

Semantic Search example
Now we need to find which vector in the data set is closest to the desired house.

Apply same algorithm to the desired house:

[0.5 * 6500 / 11780, 2500 / 3896] = [0.2579, 0.6417]

There are various definitions of “closest”. Two examples are:

Test different algorithms for best results!

Cosine similarity (normalized dot product)
● Gives result in range [-1,1].
● Bigger numbers are closer, two identical

vectors gives 1.0

Euclidean distance
● Smaller numbers are closer

©2024 Aerospike, Inc. – All rights reserved / 18

Euclidean Distance

A

B

C

D

E

F

G

H

● Distance as “measured by a ruler”
● Good for low-dimensional vector spaces
● Good for text spaces

For this example, A is closest to the target, C is
furthest from the target.

def squaredEuclidean(vect1, vect2):

 magnitude = 0.0

 for i in range(len(vect1)):

 length = vect1[i] - vect2[i]

 magnitude += length * length

 return magnitude

Normally “Squared Euclidean Distance” is used
for efficiency.

©2024 Aerospike, Inc. – All rights reserved / 19

Cosine Similarity
For this example, C is closest to the target, E is
furthest from the target.

x ᐧ y = dot product of x and y
||x|| = magnitude of x

● Angle between the vectors as seen by an
observer at the origin.

● Distance to point is ignored
● Good for high-dimensional vector spaces

C

A

B

D

E

F

G

H

Good for retrieval of the most similar texts for a
given document.

def cosineSimilarity(vect1, vect2):

 dotProduct = 0.0

 magnitude1 = 0.0

 magnitude2 = 0.0

 for i in range(len(vect1)):

 dotProduct += vect1[i] * vect2[i]

 magnitude1 += vect1[i] * vect1[i]

 magnitude2 += vect2[i] * vect2[i]

 return dotProduct / sqrt(magnitude1 * magnitude2)

©2024 Aerospike, Inc. – All rights reserved / 20

Results
To get the closest house to the requirements:

1. Calculate similarity for every house against our target house
2. Sort the results from largest to smallest similarity score
3. Pick the best one

House Land Area Floor Area N Land N Floor W Land W Land Cosine Similarity Squared Euclidean
1 8800 2336 0.7470 0.5996 0.3735 0.5996 0.9886 0.0113
2 7800 2136 0.6621 0.5483 0.3311 0.5483 0.9906 0.0118
3 6300 900 0.5348 0.2310 0.2674 0.2310 0.8995 0.1687
4 6250 2150 0.5306 0.5518 0.2653 0.5518 0.9991 0.0082
5 6250 3780 0.5306 0.9702 0.2653 0.9702 0.9903 0.1081
6 3575 1270 0.3035 0.3260 0.1517 0.3260 0.9996 0.1151
7 11780 3131 1.0000 0.8036 0.5000 0.8036 0.9887 0.0765
8 7460 3896 0.6333 1.0000 0.3166 1.0000 0.9951 0.1301
9 6650 2825 0.5645 0.7251 0.2823 0.7251 0.9994 0.0070

Target house has 6,500ft2 land area, 2,500ft2 floor area.area

©2024 Aerospike, Inc. – All rights reserved / 21

Results

Best result:
Squared Euclidean

House Land Area Floor Area N Land N Floor W Land W Floor Cosine Similarity Squared Euclidean
6 3575 1270 0.3035 0.3260 0.1517 0.3260 0.9996 0.1151
9 6650 2825 0.5645 0.7251 0.2823 0.7251 0.9994 0.0070

House 6

House 9

©2024 Aerospike, Inc. – All rights reserved / 22

Notes
● The previous example used vectors of 2 dimensions.

● Other house attributes (price, number of bedrooms, age, neighborhood quality, etc) can be
introduced.

● Real world vectors can have hundreds to thousands of dimensions.

● Each vector in the search has the same number of dimensions.

● Each data set was normalized so vectors were in the range [0, 1]. This is not a requirement.

● In real models, the weights are determined by AI models like CNNs.

● The algorithm that creates the vectors on the data must be the same one used to create vectors for
search.

©2024 Aerospike, Inc. – All rights reserved / 23

Implementing a Vector DB.03

©2024 Aerospike, Inc. – All rights reserved / 24

Embedding Model

Hugging Face
https://huggingface.co/

all-MiniLM-L6-v2
*384 dimensions

sentence = "This is a long sentence which we want to transform"

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

return model.encode(sentence)

[-4.22671344e-03 1.08605370e-01 5.85176945e-02 7.73526449e-03

 1.49376178e-02 3.88745330e-02 1.62545759e-02 -2.23493334e-02

 6.18864857e-02 5.37480740e-03 6.67040721e-02 -2.60523316e-02

 ...]

https://huggingface.co/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

©2024 Aerospike, Inc. – All rights reserved / 25

RAG application flow

Vector Search

©2024 Aerospike, Inc. – All rights reserved / 26

Creating vectors!

See the RAG in action

©2024 Aerospike, Inc. – All rights reserved / 27

Commercial Vector Databases04

Advantages of a commercial database

©2024 Aerospike, Inc. – All rights reserved / 28

Drawbacks of our database
Computational Scalability

● Comparing 2 vectors takes at least 1,000
operations (384 dimensions).

● Brute force on every vector for each comparison
● Sorting the results

Memory Scalability

● Each vector requires 384 floats ~= 3kB data

Our API:

1 billion vectors => 1 trillion ops per comparison
~1.3TB DRAM

set_comparator(comparator, ordering)

add_entry(data)

similarity_search(vector, count)

©2024 Aerospike, Inc. – All rights reserved / 29

Commercial Vector Databases

See https://github.com/aerospike-examples/rag-demo for
a similar repository with full integration to a commercial
vector database.

Vector DBs are easy to get started with! Computational Scalability

● Typically pre-compute an index on vectors with a
Nearest Neighbor search algorithm

● Dramatic reduction in computational
requirements

● May still require 1000s of lookups for one query

Memory Scalability

● Many still store all vectors in memory
● Some store vectors on SSDs with memory cache

Commercial API:
define_index(...)

add_entry(data)

similarity_search(vector, count)

https://github.com/aerospike-examples/rag-demo

©2024 Aerospike, Inc. – All rights reserved / 30

HNSW Algorithm05

Hierarchical Navigable Small Worlds

©2024 Aerospike, Inc. – All rights reserved / 31

HNSW are a layer-traversal index

Start at higher levels:
● Fewer data points
● Each navigation moves further

Once desired locality is found
● Drill down to next index layer
● Repeat the process

1 HNSW search can result in thousands of
data point lookups for very large data sets.

©2024 Aerospike, Inc. – All rights reserved / 32

HNSW simple example
To continue the house example from before, say there are hundreds of points not just 9:

Good
! Too much

floor area

Too big
everywhere

Too
smal

l Not enough
land

Not
enoug
h floor
area

Too
much
land

Intuitively you would break the graph into regions, focus on the desired region then drill down:

©2024 Aerospike, Inc. – All rights reserved / 33

Drilling down
Once the best region is identified, drill into that region and repeat the process if necessary

Good! Too much floor
area

Too big everywhere

Too
small

Not enough land

Not
enough

floor
area

Too much
land

In an HNSW, the regions are an index.
Once the number of points in region is small enough, use brute force.

©2024 Aerospike, Inc. – All rights reserved / 34

Aerospike implementation of HNSW
Storage

● Fast K-V retrieval
● Scalable to PB
● Very low latency
● Stores:

○ application data
○ vector search index

PARTITIONED INDEX

Index

● Partitioned, horizontally scalable
● Caches vector search off storage
● Self-healing
● Geometric cache to optimize

cache-hit ratio

©2024 Aerospike, Inc. – All rights reserved / 35

Faster parallel writes
Index corruption highly likely

Scalable HNSW Challenge - Writes!

Writes preserve integrity of the index
Lock contention lowers write throughput
Non-scalable solution

��

Serialized writes Parallelized writes

❗

©2024 Aerospike, Inc. – All rights reserved / 36

Aerospike solution
● Application writes to each shard broken

into batches

● Each shard has locality to a particular
section of the HNSW

● Each batch forms a unique HNSW with
minimal lock contention

● Batches merged into main HNSW index

● Allows good parallelization whilst
maintaining index integrity

● Self healing index processes can fix
minor inconsistencies from node
crashes, etc.

● BUT writes can be slower to reflect for
reads (normally not an issue)

��

©2024 Aerospike, Inc. – All rights reserved / 37

Use of Vector Databases06

©2024 Aerospike, Inc. – All rights reserved / 38

Fraud Detection: Vector search can analyze transaction patterns by transforming data into vector
representations, enabling real-time detection of anomalies and potential fraud.

Enhanced Search Capabilities: Vector search can improve the accuracy and relevance of search
results within applications, and allows easy search across structured or unstructured data.

Transaction Categorization: Using vector embeddings to classify and categorize transactions can help
users track spending patterns and generate better financial insights.

Risk Assessment: Assess credit risk from vector embeddings for customer data, helping them make
informed lending decisions.

Predictive Analytics: By utilizing vector representations of historical data, you can build models that
predict future trends, aiding in proactive decision-making.

Similarity Search

©2024 Aerospike, Inc. – All rights reserved / 39

RAG in the wild
Chatbots: Chatbots/virtual assistants can provide accurate, context-aware responses to user inquiries.

Regulatory Compliance: Ingestion of the latest regulatory requirements and generation of compliance
reports or updates based on the latest regulations.

Risk Management: RAG can pull historical risk data and generate comprehensive risk assessments for
loans or investments, aiding in decision-making processes.

Sentiment Analysis: By ingesting data from social media, news articles, and financial reports an idea of
sentiment can be generated.

Loan and Mortgage Processing: Streamlining the loan application process by retrieving necessary
documentation and generating personalized loan offers based on applicant profiles.

©2024 Aerospike, Inc. – All rights reserved / 40

The Aerospike Community

Try the Aerospike Vector Database for
free!

Join the conversation and become a
part of our community!

Thank you

