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create-a-vector-db.netlify.app

While you wait, please help create a data set by visiting this url and 
create a product or two for a fictional bank dealing with mythological 
creatures

For example:

Type: Mortgage Product
Name: Swamp Leasing
Description: Lending for the leasing of swamps. Primarily focused 
around murky swamps for ogres, but other creatures may use this 
product.

Use your imagination, make it kooky and funny and not rude but focused 
around mythological creatures please!

Vector Databases Demystified

https://github.com/aerospike-examples/create-a-vector-database
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Large Language Models01

What is an LLM anyway?
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LLMs

Large Language Models (LLMs) are a 
type of artificial intelligence that uses 
deep learning techniques and 
massively large data sets to 
understand, summarize and generate 
new content.

Recently popularized through 
Chat-GPT, Llama, Gemini, etc.

Billions of calculations per interaction!

Yes, they can!

Can fish breathe under water?

LLM



©2024 Aerospike, Inc. – All rights reserved   / 6

Prompt Engineering
PROMPT = '''\
You are a happy chatbot designed to answer the following question 
in a whimsical manner.

Question: Do fish breathe air?
'''

PROMPT = '''\
You are an angry chatbot designed to answer the following question 
in a gruff manner.

Question: Do fish breathe air?
'''
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Using Large Language Models

gemini-1.5-flash-001

from google.oauth2 import service_account

import vertexai

from vertexai.generative_models import GenerativeModel

# Credentials to google account to allow login

credentials = service_account.Credentials.from_service_account_file("auth.json")

vertexai.init(project="aero-devrel", location="us-central1", credentials=credentials)

model = GenerativeModel("gemini-1.5-flash-001")

chat = model.start_chat(response_validation=False)

result = chat.send_message(

    content="Do fish breathe air?",

    stream=False

)

print(result)

print(result.candidates[0].content.parts[0].text)
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Take a look!

Let’s play around with an LLM
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Improving LLM Output
LLMs are prone to:

● Stale data (only know that they’re trained on)
● Non domain specific 
● Hallucinations

How do I create a secondary index 
in Aerospike?

Indexes in Aerospike are created 
using the Secondary Index 

Administration Tool

Hallucination!

LLM
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Fine tuning LLMs

● Adjusts the model’s parameters and 
embeddings based on new data

● Helps model perform better for specific 
tasks

○ Eg adapting to legal domain
● Requires lots of time, compute and 

labeling
● Harder to adapt to new information due to 

retraining

Publicly 
available data 

set

Foundational 
LLM

Fine Tuned LLM

Labeled, 
domain-specific 

data set

Domain of the data scientist

AppUser
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Retrieval Augmented Generation

● Allows stricter access control to 
proprietary data

● More cost-effective and scalable
● Rapid access to latest data

Publicly 
available data 

set

Foundational 
LLM

User

Domain-specific 
data in vector 

DB

Embedding 
Model

Domain of the developer

App
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Hallucinations!

Prevention through prompts
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Vectors and Semantic Search02

How does a semantic search work?
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Semantic search with vectors
Vector embeddings capture the semantic 
meaning of source data.

● Reduces high volume data 
according to meaning

● Similar to a “lossy” algorithm like 
JPEG compression

Vector

1.1
2.3
6.4
2.1
1.0
…

Embedding 
Model
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Vector example
Consider searching for a house with the following criteria: 

● You want about 2,500ft2 floor area and 6,500ft2 land area
● Floor space is twice as important compared to land area

Of the 9 houses below, which one should you choose?

House Land Area Floor Area
1 8800 2336
2 7800 2136
3 6300 900
4 6250 2150
5 6250 3780
6 3575 1270
7 11780 3131
8 7460 3896
9 6650 2825
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Embedding example
To turn each house into a vector:

1. Normalize both land area and floor area by dividing each one by the largest value in the column
○ Gives a value in the range [0,1] for each value
○ E.g., house 1 land area is 8,800ft2, largest land area is 11,780ft2, 8800/11780 = 0.7470

House Land Area Floor Area N Land N Floor W Land W Floor
1 8800 2336 0.7470 0.5996 0.3735 0.5996
2 7800 2136 0.6621 0.5483 0.3311 0.5483
3 6300 900 0.5348 0.2310 0.2674 0.2310
4 6250 2150 0.5306 0.5518 0.2653 0.5518
5 6250 3780 0.5306 0.9702 0.2653 0.9702
6 3575 1270 0.3035 0.3260 0.1517 0.3260

7 11780 3131 1.0000 0.8036 0.5000 0.8036

8 7460 3896 0.6333 1.0000 0.3166 1.0000
9 6650 2825 0.5645 0.7251 0.2823 0.7251

2. Since floor area is worth twice as 
much as land area, divide land area 
by 2 (weighting)

3. Vector for each house is: 
[W Land, W Floor]
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Semantic Search example
Now we need to find which vector in the data set is closest to the desired house.

Apply same algorithm to the desired house: 

[0.5 * 6500 / 11780, 2500 / 3896] = [0.2579, 0.6417]

There are various definitions of “closest”. Two examples are:

Test different algorithms for best results!

Cosine similarity (normalized dot product) 
● Gives result in range [-1,1]. 
● Bigger numbers are closer, two identical 

vectors gives 1.0

Euclidean distance
● Smaller numbers are closer
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Euclidean Distance

A

B

C

D

E

F

G

H

● Distance as “measured by a ruler”
● Good for low-dimensional vector spaces
● Good for text spaces

For this example, A is closest to the target, C is 
furthest from the target.

def squaredEuclidean(vect1, vect2):

   magnitude = 0.0

   for i in range(len(vect1)):

       length = vect1[i] - vect2[i]

       magnitude += length * length

   return magnitude

Normally “Squared Euclidean Distance” is used 
for efficiency.
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Cosine Similarity
For this example, C is closest to the target, E is 
furthest from the target.

x ᐧ y = dot product of x and y
||x|| = magnitude of x

● Angle between the vectors as seen by an 
observer at the origin.

● Distance to point is ignored
● Good for high-dimensional vector spaces

C

A

B

D

E

F

G

H

Good for retrieval of the most similar texts for a 
given document.

def cosineSimilarity(vect1, vect2):

   dotProduct = 0.0

   magnitude1 = 0.0

   magnitude2 = 0.0

   for i in range(len(vect1)):

       dotProduct += vect1[i] * vect2[i]

       magnitude1 += vect1[i] * vect1[i]

       magnitude2 += vect2[i] * vect2[i]

   return dotProduct / sqrt(magnitude1 * magnitude2)
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Results
To get the closest house to the requirements:

1. Calculate similarity for every house against our target house
2. Sort the results from largest to smallest similarity score
3. Pick the best one

House Land Area Floor Area N Land N Floor W Land W Land Cosine Similarity Squared Euclidean
1 8800 2336 0.7470 0.5996 0.3735 0.5996 0.9886 0.0113
2 7800 2136 0.6621 0.5483 0.3311 0.5483 0.9906 0.0118
3 6300 900 0.5348 0.2310 0.2674 0.2310 0.8995 0.1687
4 6250 2150 0.5306 0.5518 0.2653 0.5518 0.9991 0.0082
5 6250 3780 0.5306 0.9702 0.2653 0.9702 0.9903 0.1081
6 3575 1270 0.3035 0.3260 0.1517 0.3260 0.9996 0.1151
7 11780 3131 1.0000 0.8036 0.5000 0.8036 0.9887 0.0765
8 7460 3896 0.6333 1.0000 0.3166 1.0000 0.9951 0.1301
9 6650 2825 0.5645 0.7251 0.2823 0.7251 0.9994 0.0070

Target house has 6,500ft2 land area, 2,500ft2 floor area.area
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Results

Best result:
Squared Euclidean

House Land Area Floor Area N Land N Floor W Land W Floor Cosine Similarity Squared Euclidean
6 3575 1270 0.3035 0.3260 0.1517 0.3260 0.9996 0.1151
9 6650 2825 0.5645 0.7251 0.2823 0.7251 0.9994 0.0070

House 6

House 9
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Notes
● The previous example used vectors of 2 dimensions.

● Other house attributes (price, number of bedrooms, age, neighborhood quality, etc) can be 
introduced.

● Real world vectors can have hundreds to thousands of dimensions.

● Each vector in the search has the same number of dimensions.

● Each data set was normalized so vectors were in the range [0, 1]. This is not a requirement.

● In real models, the weights are determined by AI models like CNNs.

● The algorithm that creates the vectors on the data must be the same one used to create vectors for 
search.
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Implementing a Vector DB.03
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Embedding Model

Hugging Face
https://huggingface.co/ 

all-MiniLM-L6-v2
*384 dimensions

sentence = "This is a long sentence which we want to transform"

from sentence_transformers import SentenceTransformer

model = SentenceTransformer("all-MiniLM-L6-v2")

return model.encode(sentence)

[-4.22671344e-03  1.08605370e-01  5.85176945e-02  7.73526449e-03

  1.49376178e-02  3.88745330e-02  1.62545759e-02 -2.23493334e-02

  6.18864857e-02  5.37480740e-03  6.67040721e-02 -2.60523316e-02

  ...]

https://huggingface.co/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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RAG application flow

Vector Search
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Creating vectors!

See the RAG in action
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Commercial Vector Databases04

Advantages of a commercial database
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Drawbacks of our database
Computational Scalability

● Comparing 2 vectors takes at least 1,000 
operations (384 dimensions).

● Brute force on every vector for each comparison
● Sorting the results

Memory Scalability

● Each vector requires 384 floats ~= 3kB data

Our API:

1 billion vectors => 1 trillion ops per comparison 
~1.3TB DRAM

set_comparator(comparator, ordering)

add_entry(data)

similarity_search(vector, count)
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Commercial Vector Databases

See https://github.com/aerospike-examples/rag-demo for 
a similar repository with full integration to a commercial 
vector database. 

Vector DBs are easy to get started with! Computational Scalability

● Typically pre-compute an index on vectors with a 
Nearest Neighbor search algorithm

● Dramatic reduction in computational 
requirements

● May still require 1000s of lookups for one query

Memory Scalability

● Many still store all vectors in memory
● Some store vectors on SSDs with memory cache 

Commercial API:
define_index(...)

add_entry(data)

similarity_search(vector, count)

https://github.com/aerospike-examples/rag-demo
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HNSW Algorithm05

Hierarchical Navigable Small Worlds
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HNSW are a layer-traversal index

Start at higher levels:
● Fewer data points
● Each navigation moves further

Once desired locality is found
● Drill down to next index layer
● Repeat the process

1 HNSW search can result in thousands of 
data point lookups for very large data sets.
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HNSW simple example
To continue the house example from before, say there are hundreds of points not just 9:

Good
! Too much 

floor area

Too big 
everywhere

Too 
smal

l Not enough 
land

Not 
enoug
h floor 
area

Too 
much 
land

Intuitively you would break the graph into regions, focus on the desired region then drill down:
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Drilling down
Once the best region is identified, drill into that region and repeat the process if necessary

Good! Too much floor 
area

Too big everywhere

Too 
small

Not enough land

Not 
enough 

floor 
area

Too much 
land

In an HNSW, the regions are an index.
Once the number of points in region is small enough, use brute force.
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Aerospike implementation of HNSW
Storage

● Fast K-V retrieval
● Scalable to PB
● Very low latency
● Stores:

○ application data
○ vector search index

PARTITIONED INDEX

Index

● Partitioned, horizontally scalable
● Caches vector search off storage
● Self-healing
● Geometric cache to optimize 

cache-hit ratio
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Faster parallel writes
Index corruption highly likely

Scalable HNSW Challenge - Writes!

Writes preserve integrity of the index
Lock contention lowers write throughput
Non-scalable solution

��

Serialized writes Parallelized writes

❗
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Aerospike solution
● Application writes to each shard broken 

into batches

● Each shard has locality to a particular 
section of the HNSW

● Each batch forms a unique HNSW with 
minimal lock contention

● Batches merged into main HNSW index

● Allows good parallelization whilst 
maintaining index integrity

● Self healing index processes can fix 
minor inconsistencies from node 
crashes, etc.

● BUT writes can be slower to reflect for 
reads (normally not an issue)

��
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Use of Vector Databases06
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Fraud Detection: Vector search can analyze transaction patterns by transforming data into vector 
representations, enabling real-time detection of anomalies and potential fraud.

Enhanced Search Capabilities: Vector search can improve the accuracy and relevance of search 
results within applications, and allows easy search across structured or unstructured data.

Transaction Categorization: Using vector embeddings to classify and categorize transactions can help 
users track spending patterns and generate better financial insights.

Risk Assessment: Assess credit risk from vector embeddings for customer data, helping them make 
informed lending decisions.

Predictive Analytics: By utilizing vector representations of historical data, you can build models that 
predict future trends, aiding in proactive decision-making.

Similarity Search
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RAG in the wild
Chatbots: Chatbots/virtual assistants can provide accurate, context-aware responses to user inquiries.

Regulatory Compliance: Ingestion of the latest regulatory requirements and generation of compliance 
reports or updates based on the latest regulations.

Risk Management: RAG can pull historical risk data and generate comprehensive risk assessments for 
loans or investments, aiding in decision-making processes.

Sentiment Analysis: By ingesting data from social media, news articles, and financial reports an idea of 
sentiment can be generated.

Loan and Mortgage Processing: Streamlining the loan application process by retrieving necessary 
documentation and generating personalized loan offers based on applicant profiles.
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The Aerospike Community 

Try the Aerospike Vector Database for 
free!

Join the conversation and become a 
part of our community! 



Thank you


