
Hybrid Search

Python-Powered
Precision and Scalability

Art Anderson
Director of Developer Advocacy

©2024 Aerospike, Inc. – All rights reserved / 2

Agenda Building a Better Search01

Semantic Search02

Keyword Search03

Ranking and Sorting04

Tying things Together05

The Future06

©2024 Aerospike, Inc. – All rights reserved / 3

Building a Better Search01

©2024 Aerospike, Inc. – All rights reserved / 4

Why build a search engine?

Search on the website was broken,
content was hard to find, filtering was
non-existent.

● Open the door to more complex
search functionality to help users
learn and explore.

● Eat a little of our own dog food.

● Why not?

©2024 Aerospike, Inc. – All rights reserved / 5

The Database

The Server

Scraper

API

The Transformer

Data PrepThe Data

The Front End

The Plan

©2024 Aerospike, Inc. – All rights reserved / 6

The data

● Main website
● Documentation
● Developer Hub
● Blogs
● Knowledge Base

Aerospike.com

Pages are scraped with Scrapy and
converted into markdown.

XPath queries are used to target the
relevant content for different page
types.

©2024 Aerospike, Inc. – All rights reserved / 7

The data

● Easy to use
● Light weight
● Comprehensive tool chest

Each page is broken into smaller
chunks while maintaining context.

Chunks are prepped for embedding
by adding a prefix and metadata.

LlamaIndex

…

©2024 Aerospike, Inc. – All rights reserved / 8

Semantic Search02

Search with meaning

©2024 Aerospike, Inc. – All rights reserved / 9

Search with vectors

Vector embeddings capture the semantic
meaning of source data.

● Reduces high volume data
according to meaning.

● Similar to a “lossy” algorithm like
JPEG compression.

©2024 Aerospike, Inc. – All rights reserved / 10

Gemini generates a vector for each
chunk, capturing semantic meaning.

This model must be used to generate
embeddings on the query as well.

Generating vectors

● 768 dimensions
● Fast and easy!

Gemini

1.2, 2.3, 3.4, …

©2024 Aerospike, Inc. – All rights reserved / 11

Aerospike stores each chunk along
with document information.

Cosine similarity is used to query the
data. The most similar chunks are
returned for the search.

Storing the data

● HNSW
● Speed and scale
● It’s Aerospike!

Aerospike Vector Search

1.2, 2.3, 3.4, …

©2024 Aerospike, Inc. – All rights reserved / 12

Querying the data

1.1,1.2,1.…

©2024 Aerospike, Inc. – All rights reserved / 13

Keyword Search03

Flip things inside out

©2024 Aerospike, Inc. – All rights reserved / 14

Inverted Index

An inverted index is a data model
commonly used in search engines. The
index is organized by keywords. Each
keyword maintains a list of the
documents in which it appears.

● Fast full-text search across large
data sets.

● Easy to build, but requires complex
processing to add to and update
the index.

©2024 Aerospike, Inc. – All rights reserved / 15

Identifying keywords

word1, word2, …

Each chunk goes through the spaCy
filter producing a list of tokens used to
create the inverted index.

This must be used for filtering the
query as well.

● Tokenization
● Stop word removal
● Lemmatization

spaCy

©2024 Aerospike, Inc. – All rights reserved / 16

Each keyword is a record containing a
map.

Map keys are the document identifier,
values record the keyword frequency
and position along with other
metadata.

Creating the index

● Fast
● Handles complex data types well
● Same storage as vectors

Aerospike Key-Value

word1, word2, …

©2024 Aerospike, Inc. – All rights reserved / 17

Querying the data

word1,word2

?

©2024 Aerospike, Inc. – All rights reserved / 18

BM25 (Best Match 25)

ΣIDF(qi)score(D,Q)=
ƒ(qi,D) (k1+ 1)

ƒ(qi,D) + k1 (1 - b + b)

n

i
|D|
avgdl

log
|D|

|d:qi∈d
|

The Inverse
Document Frequency

The document

The query terms
How many times does
the ith term appear in

document D

Control for term
frequency

Control for
document lengthΣ

n

i

The length of document
D over the average

document length

©2024 Aerospike, Inc. – All rights reserved / 19

Ranking and Sorting04

Putting it all in order

©2024 Aerospike, Inc. – All rights reserved / 20

Semantic re-ranking

Pros
● Fast
● Cheap (Google credits!)

Cons
● Pretty terrible results

Pros
● Good results

Cons
● Slow
● Cost

Neither option seemed to be a good fit for our application…

©2024 Aerospike, Inc. – All rights reserved / 21

RRF(d) = Σ(r ∈ R) 1 / (k +
r(d))

Reciprocal Rank Fusion (RRF)

The document
The rank of the

current document

The retrievers

The sum across all
retrievers

The constant
(usually 60)

©2024 Aerospike, Inc. – All rights reserved / 22

Tying things together05

©2024 Aerospike, Inc. – All rights reserved / 23

The server and API

Fully built in Python using FastAPI and
uvicorn. Gunicorn is used to manage the
worker processes in production.

● Fast to develop/Easy to work with

● Excellent performance!

@app.get("/rest/v1/search/")

async def search(

 q: str,

 count: int = 5,

 search_type: str = "hybrid",

 chat: bool = False,

 page: int = 0,

 pageSize: int = 10,

 filters: str = ""

):

 # Do stuff!

©2024 Aerospike, Inc. – All rights reserved / 24

The front end

The website is built using the Astro
framework and uses React for
interactivity.

● Initial modal pop-up from
anywhere on the site.

● Full search page available with
filtering options.

©2024 Aerospike, Inc. – All rights reserved / 25

The Future06

Where do we go from here?

©2024 Aerospike, Inc. – All rights reserved / 26

Looking forward

A perfect world where improved search
has transformed daily life. People enjoy
seamless access to information in a
harmonious, futuristic setting, blending
nature with technology…

Nah, we’ll probably just build a RAG.

©2024 Aerospike, Inc. – All rights reserved / 27

The Aerospike Community

Try the Aerospike Vector Database for
free!

Join the conversation and become a
part of our community!

Thank you

